Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Viruses ; 16(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38400011

RESUMEN

To evaluate whether oral fluids (OF) and urine can serve as alternative, non-invasive samples to diagnose chikungunya virus (CHIKV) infection via RT-qPCR, we employed the same RNA extraction and RT-qPCR protocols on paired serum, OF and urine samples collected from 51 patients with chikungunya during the acute phase of the illness. Chikungunya patients were confirmed through RT-qPCR in acute-phase sera (N = 19), IgM seroconversion between acute- and convalescent-phase sera (N = 12), or IgM detection in acute-phase sera (N = 20). The controls included paired serum, OF and urine samples from patients with non-arbovirus acute febrile illness (N = 28) and RT-PCR-confirmed dengue (N = 16). Nine (47%) of the patients with positive RT-qPCR for CHIKV in sera and two (17%) of those with CHIKV infection confirmed solely via IgM seroconversion had OF positive for CHIKV in RT-qPCR. One (5%) patient with CHIKV infection confirmed via serum RT-qPCR was positive in the RT-qPCR performed on urine. None of the negative control group samples were positive. Although OF may serve as an alternative sample for diagnosing acute chikungunya in specific settings, a negative result cannot rule out an infection. Further research is needed to investigate whether OF and urine collected later in the disease course when serum becomes RT-qPCR-negative may be helpful in CHIKV diagnosis and surveillance, as well as to determine whether urine and OF pose any risk of CHIKV transmission.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Dengue , Humanos , Virus Chikungunya/genética , ARN Viral/genética , Progresión de la Enfermedad , Inmunoglobulina M , Anticuerpos Antivirales , Dengue/epidemiología
2.
Lancet Reg Health Am ; 30: 100673, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38283942

RESUMEN

In the Americas, one decade following its emergence in 2013, chikungunya virus (CHIKV) continues to spread and cause epidemics across the region. To date, 3.7 million suspected and laboratory-confirmed chikungunya cases have been reported in 50 countries or territories in the Americas. Here, we outline the current status and epidemiological aspects of chikungunya in the Americas and discuss prospects for future research and public health strategies to combat CHIKV in the region.

3.
Lancet Planet Health ; 7(12): e999-e1005, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38056970

RESUMEN

Anopheles stephensi is a major vector of malaria in Asia and the Arabian Peninsula, and its recent invasion into Africa poses a major threat to malaria control and elimination efforts on the continent. The mosquito is well adapted to urban environments, and its presence in Africa could potentially lead to an increase in malaria transmission in cities. Most of the knowledge about An stephensi ecology in Africa has been generated from studies conducted during the rainy season, when vectors are most abundant. Here, we provide evidence from the peak of the dry season in the city of Jigjiga in Ethiopia, and report An stephensi immature stages infesting predominantly in water reservoirs made to support construction operations (ie, in construction sites or associated with brick-manufacturing businesses). Political and economic changes in Ethiopia (particularly the Somali Region) have fuelled an unprecedented construction boom since 2018 that, in our opinion, has been instrumental in the establishment, persistence, and propagation of An stephensi via the year-round availability of perennial larval habitats associated with construction. We argue that larval source management during the dry season might provide a unique opportunity for focused control of An stephensi in Jigjiga and similar areas.


Asunto(s)
Anopheles , Malaria , Animales , Etiopía , Mosquitos Vectores , Malaria/epidemiología , Malaria/prevención & control , Ecosistema
4.
PLoS Negl Trop Dis ; 17(12): e0011863, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150470

RESUMEN

BACKGROUND: The first chikungunya virus (CHIKV) outbreaks during the modern scientific era were identified in the Americas in 2013, reaching high attack rates in Caribbean countries. However, few cohort studies have been performed to characterize the initial dynamics of CHIKV transmission in the New World. METHODOLOGY/PRINCIPAL FINDINGS: To describe the dynamics of CHIKV transmission shortly after its introduction in Brazil, we performed semi-annual serosurveys in a long-term community-based cohort of 652 participants aged ≥5 years in Salvador, Brazil, between Feb-Apr/2014 and Nov/2016-Feb/2017. CHIKV infections were detected using an IgG ELISA. Cumulative seroprevalence and seroincidence were estimated and spatial aggregation of cases was investigated. The first CHIKV infections were identified between Feb-Apr/2015 and Aug-Nov/2015 (incidence: 10.7%) and continued to be detected at low incidence in subsequent surveys (1.7% from Aug-Nov/2015 to Mar-May/2016 and 1.2% from Mar-May/2016 to Nov/206-Feb/2017). The cumulative seroprevalence in the last survey reached 13.3%. It was higher among those aged 30-44 and 45-59 years (16.1% and 15.6%, respectively), compared to younger (12.4% and 11.7% in <15 and 15-29 years, respectively) or older (10.3% in ≥60 years) age groups, but the differences were not statistically significant. The cumulative seroprevalence was similar between men (14.7%) and women (12.5%). Yet, among those aged 15-29 years, men were more often infected than women (18.1% vs. 7.4%, respectively, P = 0.01), while for those aged 30-44, a non-significant opposite trend was observed (9.3% vs. 19.0%, respectively, P = 0.12). Three spatial clusters of cases were detected in the study site and an increased likelihood of CHIKV infection was detected among participants who resided with someone with CHIKV IgG antibodies. CONCLUSIONS/SIGNIFICANCE: Unlike observations in other settings, the initial spread of CHIKV in this large urban center was limited and focal in certain areas, leaving a high proportion of the population susceptible to further outbreaks. Additional investigations are needed to elucidate the factors driving CHIKV spread dynamics, including understanding differences with respect to dengue and Zika viruses, in order to guide prevention and control strategies for coping with future outbreaks.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Infección por el Virus Zika , Virus Zika , Masculino , Humanos , Femenino , Estudios de Cohortes , Brasil/epidemiología , Estudios Seroepidemiológicos , Anticuerpos Antivirales , Inmunoglobulina G
5.
One Health ; 17: 100576, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024282

RESUMEN

Crimean-Congo Hemorrhagic Fever (CCHF) is a viral disease that can infect humans via contact with tick vectors or livestock reservoirs and can cause moderate to severe disease. The first human case of CCHF in Uganda was identified in 2013. To determine the geographic distribution of the CCHF virus (CCHFV), serosampling among herds of livestock was conducted in 28 Uganda districts in 2017. A geostatistical model of CCHF seroprevalence among livestock was developed to incorporate environmental and anthropogenic variables associated with elevated CCHF seroprevalence to predict CCHF seroprevalence on a map of Uganda and estimate the probability that CCHF seroprevalence exceeded 30% at each prediction location. Environmental and anthropogenic variables were also analyzed in separate models to determine the spatially varying drivers of prediction and determine which covariate class resulted in best prediction certainty. Covariates used in the full model included distance to the nearest croplands, average annual change in night-time light index, percent sand soil content, land surface temperature, and enhanced vegetation index. Elevated CCHF seroprevalence occurred in patches throughout the country, being highest in northern Uganda. Environmental covariates drove predicted seroprevalence in the full model more than anthropogenic covariates. Combination of environmental and anthropogenic variables resulted in the best prediction certainty. An understanding of the spatial distribution of CCHF across Uganda and the variables that drove predictions can be used to prioritize specific locations and activities to reduce the risk of future CCHF transmission.

6.
PLoS Negl Trop Dis ; 17(9): e0011593, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656759

RESUMEN

Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.


Asunto(s)
Culicidae , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Viremia , Infección por el Virus Zika/epidemiología , Dengue/epidemiología
7.
Glob Public Health ; 18(1): 2261773, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37750403

RESUMEN

Climate change is an important driver of migration, but little research exists on whether migrant communities in the U.S. identify climate change-related factors as reasons for migrating. In 2021, we conducted a multidisciplinary, collaborative project to better understand the nexus of climate change and immigrant health in the Atlanta area. This paper presents one arm of this collaboration that explored both the role of climate change in decisions to immigrate to Georgia and the ways that climate change intersects with other possible drivers of migration. First generation migrants from Latin America were recruited primarily through CPACS Cosmo Health Center and were invited to participate in an intake survey and an in-depth interview. Results were analyzed using descriptive statistics and thematic analysis. Findings suggest that while participants may not have explicitly identified climate change as a primary reason for migration, in both surveys and in-depth interviews, participants reported multiple and intersecting social, economic, political, and environmental factors that are directly or indirectly influenced by climate change and that are involved in their decisions to migrate. The narratives that emerged from in-depth interviews further contextualised survey data and elucidated the complex nexus of climate change, migration, and health.


Asunto(s)
Emigrantes e Inmigrantes , Migrantes , Humanos , América Latina , Cambio Climático , Instituciones de Salud
8.
J Am Mosq Control Assoc ; 39(2): 85-95, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270926

RESUMEN

Aedes aegypti is the primary vector of dengue fever virus (DENV) worldwide. Infusions made from organic materials have been shown to act as oviposition attractants for Ae. aegypti; however, studies on locally suitable infusion materials are lacking. The current study assessed the suitability of 4 locally available materials as oviposition infusions for use in surveillance and control of Ae. aegypti in Kwale County, Kenya. Oviposition infusion preferences were assessed in laboratory, semifield, and field conditions, using 4 infusions made from banana, grass, neem, and coconut. In addition, ovitrapping in wall, grass, bush, and banana microhabitats was done in 10 houses each in urban and rural coastal households to determine suitable oviposition microhabitats. Overall, the highest oviposition responses were observed for banana infusion, followed by neem and grass infusions, which were comparable. Coconut infusion resulted in the lowest oviposition response. Although female Ae. aegypti did not show preference for any microhabitat, the oviposition activity across all the microhabitats was highly enhanced by use of the organic infusions. Banana, neem, and grass infusions could be used to attract gravid mosquitoes to oviposition sites laced with insecticide to kill eggs. Additionally, banana plantings could be important targets for integrated vector control programs.


Asunto(s)
Aedes , Dengue , Insecticidas , Femenino , Animales , Aedes/fisiología , Mosquitos Vectores , Oviposición , Kenia/epidemiología , Poaceae
9.
Parasit Vectors ; 16(1): 159, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149611

RESUMEN

BACKGROUND: Low-income urban communities in the tropics often lack sanitary infrastructure and are overcrowded, favoring Aedes aegypti proliferation and arboviral transmission. However, as Ae. aegypti density is not spatially homogeneous, understanding the role of specific environmental characteristics in determining vector distribution is critical for planning control interventions. The objectives of this study were to identify the main habitat types for Ae. Aegypti, assess their spatial densities to identify major hotspots of arbovirus transmission over time and investigate underlying factors in a low-income urban community in Salvador, Brazil. We also tested the field-collected mosquitoes for arboviruses. METHODS: A series of four entomological and socio-environmental surveys was conducted in a random sample of 149 households and their surroundings between September 2019 and April 2021. The surveys included searching for potential breeding sites (water-containing habitats) and for Ae. aegypti immatures in them, capturing adult mosquitoes and installing ovitraps. The spatial distribution of Ae. aegypti density indices were plotted using kernel density-ratio maps, and the spatial autocorrelation was assessed for each index. Visual differences on the spatial distribution of the Ae. aegypti hotspots were compared over time. The association of entomological findings with socio-ecological characteristics was examined. Pools of female Ae. aegypti were tested for dengue, Zika and chikungunya virus infection. RESULTS: Overall, 316 potential breeding sites were found within the study households and 186 in the surrounding public spaces. Of these, 18 (5.7%) and 7 (3.7%) harbored a total of 595 and 283 Ae. aegypti immatures, respectively. The most productive breeding sites were water storage containers within the households and puddles and waste materials in public areas. Potential breeding sites without cover, surrounded by vegetation and containing organic matter were significantly associated with the presence of immatures, as were households that had water storage containers. None of the entomological indices, whether based on immatures, eggs or adults, detected a consistent pattern of vector clustering in the same areas over time. All the mosquito pools were negative for the tested arboviruses. CONCLUSIONS: This low-income community displayed high diversity of Ae. aegypti habitats and a high degree of heterogeneity of vector abundance in both space and time, a scenario that likely reflects other low-income communities. Improving basic sanitation in low-income urban communities through the regular water supply, proper management of solid wastes and drainage may reduce water storage and the formation of puddles, minimizing opportunities for Ae. aegypti proliferation in such settings.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Brasil/epidemiología , Mosquitos Vectores , Infección por el Virus Zika/epidemiología , Agua
10.
PLoS Comput Biol ; 19(4): e1010424, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104528

RESUMEN

The mosquito Aedes aegypti is the vector of a number of medically-important viruses, including dengue virus, yellow fever virus, chikungunya virus, and Zika virus, and as such vector control is a key approach to managing the diseases they cause. Understanding the impact of vector control on these diseases is aided by first understanding its impact on Ae. aegypti population dynamics. A number of detail-rich models have been developed to couple the dynamics of the immature and adult stages of Ae. aegypti. The numerous assumptions of these models enable them to realistically characterize impacts of mosquito control, but they also constrain the ability of such models to reproduce empirical patterns that do not conform to the models' behavior. In contrast, statistical models afford sufficient flexibility to extract nuanced signals from noisy data, yet they have limited ability to make predictions about impacts of mosquito control on disease caused by pathogens that the mosquitoes transmit without extensive data on mosquitoes and disease. Here, we demonstrate how the differing strengths of mechanistic realism and statistical flexibility can be fused into a single model. Our analysis utilizes data from 176,352 household-level Ae. aegypti aspirator collections conducted during 1999-2011 in Iquitos, Peru. The key step in our approach is to calibrate a single parameter of the model to spatio-temporal abundance patterns predicted by a generalized additive model (GAM). In effect, this calibrated parameter absorbs residual variation in the abundance time-series not captured by other features of the mechanistic model. We then used this calibrated parameter and the literature-derived parameters in the agent-based model to explore Ae. aegypti population dynamics and the impact of insecticide spraying to kill adult mosquitoes. The baseline abundance predicted by the agent-based model closely matched that predicted by the GAM. Following spraying, the agent-based model predicted that mosquito abundance rebounds within about two months, commensurate with recent experimental data from Iquitos. Our approach was able to accurately reproduce abundance patterns in Iquitos and produce a realistic response to adulticide spraying, while retaining sufficient flexibility to be applied across a range of settings.


Asunto(s)
Aedes , Virus Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores/fisiología , Dinámica Poblacional , Virus de la Fiebre Amarilla , Dengue/epidemiología
11.
PNAS Nexus ; 2(3): pgad024, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909820

RESUMEN

Transmission heterogeneity, whereby a disproportionate fraction of pathogen transmission events result from a small number of individuals or geographic locations, is an inherent property of many, if not most, infectious disease systems. For vector-borne diseases, transmission heterogeneity is inferred from the distribution of the number of vectors per host, which could lead to significant bias in situations where vector abundance and transmission risk at the household do not correlate, as is the case with dengue virus (DENV). We used data from a contact tracing study to quantify the distribution of DENV acute infections within human activity spaces (AS), the collection of residential locations an individual routinely visits, and quantified measures of virus transmission heterogeneity from two consecutive dengue outbreaks (DENV-4 and DENV-2) that occurred in the city of Iquitos, Peru. Negative-binomial distributions and Pareto fractions showed evidence of strong overdispersion in the number of DENV infections by AS and identified super-spreading units (SSUs): i.e. AS where most infections occurred. Approximately 8% of AS were identified as SSUs, contributing to more than 50% of DENV infections. SSU occurrence was associated more with DENV-2 infection than with DENV-4, a predominance of inapparent infections (74% of all infections), households with high Aedes aegypti mosquito abundance, and high host susceptibility to the circulating DENV serotype. Marked heterogeneity in dengue case distribution, and the role of inapparent infections in defining it, highlight major challenges faced by reactive interventions if those transmission units contributing the most to transmission are not identified, prioritized, and effectively treated.

12.
Am J Trop Med Hyg ; 108(4): 712-721, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878208

RESUMEN

Uganda reported cases of Rift Valley fever virus (RVFV) for the first time in almost 50 years in 2016, following an outbreak of Rift Valley fever (RVF) that caused four human infections, two of which resulted in death. Subsequent outbreak investigation serosurveys found high seroprevalence of IgG antibodies without evidence of acute infection or IgM antibodies, suggesting the possibility of undetected RVFV circulation prior to the outbreak. After the 2016 outbreak investigation, a serosurvey was conducted in 2017 among domesticated livestock herds across Uganda. Sampling data were incorporated into a geostatistical model to estimate RVF seroprevalence among cattle, sheep, and goats. Variables resulting in the best fit to RVF seroprevalence sampling data included annual variability in monthly precipitation and enhanced vegetation index, topographic wetness index, log human population density percent increase, and livestock species. Individual species RVF seroprevalence prediction maps were created for cattle, sheep, and goats, and a composite livestock prediction was created based on the estimated density of each species across the country. Seroprevalence was greater in cattle compared with sheep and goats. Predicted seroprevalence was greatest in the central and northwestern quadrant of the country, surrounding Lake Victoria, and along the Southern Cattle Corridor. We identified areas that experienced conditions conducive to potential increased RVFV circulation in 2021 in central Uganda. An improved understanding of the determinants of RVFV circulation and locations with high probability of elevated RVF seroprevalence can guide prioritization of disease surveillance and risk mitigation efforts.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Bovinos , Humanos , Ovinos , Fiebre del Valle del Rift/epidemiología , Ganado , Estudios Seroepidemiológicos , Uganda/epidemiología , Anticuerpos Antivirales , Cabras
13.
PLoS One ; 18(2): e0273798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730229

RESUMEN

Current knowledge of dengue virus (DENV) transmission provides only a partial understanding of a complex and dynamic system yielding a public health track record that has more failures than successes. An important part of the problem is that the foundation for contemporary interventions includes a series of longstanding, but untested, assumptions based on a relatively small portion of the human population; i.e., people who are convenient to study because they manifest clinically apparent disease. Approaching dengue from the perspective of people with overt illness has produced an extensive body of useful literature. It has not, however, fully embraced heterogeneities in virus transmission dynamics that are increasingly recognized as key information still missing in the struggle to control the most important insect-transmitted viral infection of humans. Only in the last 20 years have there been significant efforts to carry out comprehensive longitudinal dengue studies. This manuscript provides the rationale and comprehensive, integrated description of the methodology for a five-year longitudinal cohort study based in the tropical city of Iquitos, in the heart of the Peruvian Amazon. Primary data collection for this study was completed in 2019. Although some manuscripts have been published to date, our principal objective here is to support subsequent publications by describing in detail the structure, methodology, and significance of a specific research program. Our project was designed to study people across the entire continuum of disease, with the ultimate goal of quantifying heterogeneities in human variables that affect DENV transmission dynamics and prevention. Because our study design is applicable to other Aedes transmitted viruses, we used it to gain insights into Zika virus (ZIKV) transmission when during the project period ZIKV was introduced and circulated in Iquitos. Our prospective contact cluster investigation design was initiated by detecttion of a person with a symptomatic DENV infection and then followed that person's immediate contacts. This allowed us to monitor individuals at high risk of DENV infection, including people with clinically inapparent and mild infections that are otherwise difficult to detect. We aimed to fill knowledge gaps by defining the contribution to DENV transmission dynamics of (1) the understudied majority of DENV-infected people with inapparent and mild infections and (2) epidemiological, entomological, and socio-behavioral sources of heterogeneity. By accounting for factors underlying variation in each person's contribution to transmission we sought to better determine the type and extent of effort needed to better prevent virus transmission and disease.


Asunto(s)
Arbovirus , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Estudios Longitudinales , Estudios Prospectivos , Perú/epidemiología , Infección por el Virus Zika/epidemiología
14.
Parasitol Res ; 122(3): 801-814, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683088

RESUMEN

Aedes aegypti is an important vector of several arboviruses including dengue and chikungunya viruses. Accurate identification of larval habitats of Ae. aegypti is considered an essential step in targeted control. This study determined Ae. aegypti productivity in selected larval habitats in Msambweni, Kwale County, Kenya. Three sequential larval habitat surveys were conducted. The first survey was habitat census (baseline) through which 83 representative larval habitats were identified and selected. The second and third surveys involved estimating daily productivity of the 83 selected larval habitats for 30 consecutive days during a wet and a dry season, respectively. Of 664 larval habitats examined at baseline, 144 larval habitats (21.7%) were found to be infested with Ae. aegypti larvae. At baseline, majority (71%) of the pupae were collected from two (2/6) larval habitat types, tires and pots. Multivariate analysis identified habitat type and the habitat being movable as the predictors for pupal abundance. During the 30-day daily pupal production surveys, only a few of the habitats harbored pupae persistently. Pupae were found in 28% and 12% of the larval habitats during the wet and dry seasons, respectively. In the wet season, drums, tires, and pots were identified as the key habitat types accounting for 85% of all pupae sampled. Three habitats (all drums) accounted for 80% of all the pupae collected in the dry season. Predictors for pupal productivity in the wet season were habitat type, place (whether the habitat is located at the back or front of the house), habitat purpose (use of the water in the habitat), and source of water. Although the multivariate model for habitat type did not converge, habitat type and habitat size were the only significant predictors during the dry season. Drums, pots, and tires were sources of more than 85% of Ae. aegypti pupae, reinforcing the "key container concept." Targeting these three types of habitats makes epidemiological sense, especially during the dry season.


Asunto(s)
Aedes , Dengue , Animales , Pupa , Larva , Kenia , Mosquitos Vectores , Ecosistema , Estaciones del Año , Agua
15.
Am J Trop Med Hyg ; 108(2): 366-376, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572005

RESUMEN

West Nile virus (WNV) is prevalent in the United States but shows considerable variation in transmission intensity. The purpose of this study was to compare patterns of WNV seroprevalence in avian communities sampled in Atlanta, Georgia and Chicago, Illinois during a 12-year period (Atlanta 2010-2016; Chicago 2005-2012) to reveal regional patterns of zoonotic activity of WNV. WNV antibodies were measured in wild bird sera using ELISA and serum neutralization methods, and seroprevalence among species, year, and location of sampling within each city were compared using binomial-distributed generalized linear mixed-effects models. Seroprevalence was highest in year-round and summer-resident species compared with migrants regardless of region; species explained more variance in seroprevalence within each city. Northern cardinals were the species most likely to test positive for WNV in each city, whereas all other species, on average, tested positive for WNV in proportion to their sample size. Despite similar patterns of seroprevalence among species, overall seroprevalence was higher in Atlanta (13.7%) than in Chicago (5%). Location and year of sampling had minor effects, with location explaining more variation in Atlanta and year explaining more variation in Chicago. Our findings highlight the nature and magnitude of regional differences in WNV urban ecology.


Asunto(s)
Enfermedades de las Aves , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Anticuerpos Antivirales , Enfermedades de las Aves/epidemiología , Aves , Chicago/epidemiología , Georgia/epidemiología , Illinois/epidemiología , Prevalencia , Estudios Seroepidemiológicos , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria
16.
Am J Trop Med Hyg ; 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35640647

RESUMEN

This study examined whether Aedes aegypti extends its human blood seeking activity into night hours. Human landing catches (HLC) were conducted hourly from early morning (04:30) to late evening (21:30) in urban and rural sites in Kisumu County in western Kenya, and in Kwale County at the coast. Out of 842 female Ae. aegypti mosquitoes, 71 (8.5%) were collected at night (nocturnal), 151 (17.9%) at twilight (crepuscular), and 620 (73.6%) during the day (diurnal). Three-fold and significantly more Ae. aegypti female mosquitoes were collected during the twilight (crepuscular) hours than night (nocturnal) hours. Significantly more Ae. aegypti female mosquitoes were collected during daytime (diurnal) than night time (nocturnal). In general, the number of mosquitoes collected reduced as darkness increased. Extended time into the night to seek for blood meals enhances chances for Ae. aegypti to contact humans and transmit arboviruses diseases.

17.
Am J Public Health ; 112(5): e2-e3, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35417218

Asunto(s)
COVID-19 , Humanos
18.
Emerg Infect Dis ; 28(4): 786-792, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35318917

RESUMEN

Report of a human death and exposure of white-tailed deer to Heartland virus (HRTV) in Georgia, USA, prompted the sampling of questing ticks during 2018-2019 in 26 sites near where seropositive deer were captured and the residence of the human case-patient. We processed 9,294 Amblyomma americanum ticks in pools by virus isolation in Vero E6 cells and reverse transcription PCR. Positive pools underwent whole-genome sequencing. Three pools were positive for HRTV (minimum infection rate 0.46/1,000 ticks) and none for Bourbon virus. Cell cultures confirmed HRTV presence in 2 pools. Genome sequencing, achieved for the 3 HRTV isolates, showed high similarity among samples but marked differences with previously sequenced HRTV isolates. The isolation and genomic characterization of HRTV from A. americanum ticks in Georgia confirm virus presence in the state. Clinicians and public health professionals should be aware of this emerging tickborne pathogen.


Asunto(s)
Ciervos , Phlebovirus , Garrapatas , Amblyomma , Animales , Georgia/epidemiología , Humanos
19.
J Med Entomol ; 59(3): 1065-1070, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35244168

RESUMEN

We identified mosquito species (Diptera: Culicidae) in an Atlantic Forest fragment located in a large urban park in Salvador, Brazil, one year after a citywide epizootic of yellow fever virus (YFV). Between May 2 and August 2, 2018, adult mosquitoes were collected using the human attraction method, followed by trapping with hand-nets, and CO2-baited light traps placed at ground level and in the canopy. We collected a total of 11,914 mosquitoes, which belonged to three tribes, five genera, and at least seven species. The most abundant taxa captured by CO2-baited light traps were Culex quinquefasciatus (Say, Diptera: Culicidae) Limatus spp. (Diptera: Culicidae), and Wyeomyia spp. (Diptera: Culicidae), while by human attraction, Cx. quinquefasciatus, Wyeomyia spp., and Aedes albopictus (Skuse, Diptera: Culicidae) were captured most often. The diversity of mosquitoes by species was greater in the park area with restinga vegetation compared to the area with dense rainforest. Although vectors commonly associated with sylvatic YFV transmission were not captured, we collected several species capable of transmission of other arboviruses. Given the high likelihood of encounters between mosquitoes and human visitors in environments, such as the one studied, periodic entomological surveys to determine the risk of arbovirus transmission in these settings are warranted.


Asunto(s)
Aedes , Arbovirus , Culex , Culicidae , Animales , Brasil , Dióxido de Carbono , Bosques , Mosquitos Vectores , Parques Recreativos
20.
Am J Trop Med Hyg ; 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189594

RESUMEN

Globally, cleaner cooking fuels are increasingly promoted to reduce household air pollution. However, there is concern that reductions in smoke from biomass fuels could lead to more favorable conditions for mosquitoes and potentially increase vectorborne disease risk. We investigated household entry, host-seeking, household exit, and mortality among Anopheles mosquitoes across three cooking fuel types: wood, charcoal, and liquid petroleum gas (LPG) in six experimental huts in Rwanda. Fifty laboratory-reared Anopheles gambiae mosquitoes were released each night in entry compartments outside each hut, and fuels were burned for 1 hour in the hut verandas. Collectors conducted human landing catch during cooking and for 2 hours afterward, and CDC light traps were used for the rest of the night to measure host-seeking. Differences in each outcome were assessed using generalized linear mixed models with random effects for hut, collector, and day. Cooking with LPG compared with wood and charcoal was associated with substantial increases in household entry and host-seeking. Household exit was not significantly different across fuels, and mortality was lower in LPG-burning huts compared with wood. Although these results are not directly generalizable to field conditions, they indicate a potential for clean fuel adoption to increase exposure to Anopheles mosquitoes compared with traditional biomass fuels. Additional entomological and epidemiological studies are needed to investigate changes in disease vector exposure associated with clean fuel adoption, and evaluate whether enhanced vector control interventions should be promoted in tandem with cleaner cooking fuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...